A synergistic neurotrophic response to l-dihydroxyphenylalanine and nerve growth factor.
نویسندگان
چکیده
The catecholamine precursor l-dihydroxyphenylalanine (L-DOPA) is the primary therapeutic intervention for Parkinson's disease. Although short-term exposure (30 min) potentiates dopamine (DA) release by elevating quantal size, longer term exposure to L-DOPA (48 hr) promotes neurite outgrowth from midbrain DA neurons in culture. To characterize long term effects of L-DOPA, we used a pheochromocytoma (PC12) line that extends neurites on exposure to nerve growth factor (NGF). L-DOPA potentiated the outgrowth of processes elicited by NGF. This response did not require conversion of L-DOPA to DA, was not caused by agonist effects at DA receptors, and was not blocked by the tyrosine kinase inhibitor genistein. However, similar results were found after exposure to l-n-acetylcysteine or apomorphine, a DA receptor agonist that produces a quinone metabolite, and seemed to correlate with glutathione synthesis. Long-term process elaboration was blocked by L-buthionine sulfoximine, consistent with mediation by an antioxidant mechanism. L-DOPA potentiation of NGF response was important functionally as seen by increased quantal neurotransmitter release from the L-DOPA/NGF-treated neurite varicosities, which displayed both 2-fold greater quantal size and frequency of quantal release. These results demonstrate potentiation by L-DOPA of morphological and physiological responses to neurotrophic factors as well as synergistic induction of antioxidant pathways. Together with effects on transmitter synthesis, these properties seem to provide a basis for the compound's long term presynaptic potentiation of DA release and therapeutic actions.
منابع مشابه
The Effect of Endurance Exercise Training on the Expression of Brain-Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) Genes of the Cerebellum in Diabetic Rat
Objective: Few studies have been conducted on variations of the central nervous system of diabetic patients and much fewer investigations done on the cerebellum of diabetes patients. The current research aims to investigate the effect of endurance training on neurotrophic factors affecting the cerebellum in the diabetic rat. Materials and Methods: This study is experimental.Twenty Wistar rat w...
متن کاملCo-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli
Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....
متن کاملTHE EFFECT OF ENDURANCE TRAINING ON GENE EXPRESSION OF NERVE AND FIBROBLAST GROWTH FACTORS IN THE HIPPOCAMPUS OF RATS AFTER BRAIN STROKE
Background & Aims: Neurotrophic and growth factors are known to have positive effects on neuronal proliferation. However, findings on the effects of exercise training on these factors following brain stroke are limited. Thus, the aim of the present study was to investigate the effect of endurance training on gene expression of nerve growth factor (NGF) and fibroblast growth factor (FGF) in the ...
متن کاملInvestigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth.
Neurotrophic factors direct axonal growth toward the target tissue by a concentration gradient, which is mediated through different tyrosine kinase cell surface receptors. In this study, well-defined concentration gradients of neurotrophic factors (NFs) allowed us to study the synergistic effect of different NFs (e.g. nerve growth factor [NGF], neurotrophin-3 [NT-3] and brain-derived neurotroph...
متن کاملImmobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds.
Neurotrophic factors present as concentration gradients are neurotropic cues that direct axonal growth toward their targets. Multiple factors work together in vivo to ensure axons reach the proper targets, likely interacting with one another via intracellular signalling pathways. Nerve growth factor (NGF) and neurotrophin-3 (NT-3) are neurotrophins known to guide axons as well as promote axonal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 54 4 شماره
صفحات -
تاریخ انتشار 1998